CHEMISTRY OF 1ATFRIÁ

VOLUME 5, NUMBER 10

OCTOBER 1993

© Copyright 1993 by the American Chemical Society

Communications

Unique Ammonia Reorientation in Sodium-Ammonia Intercalation Compounds of Titanium Disulfide

G. L. Burr, M. J. McKelvy, and W. S. Glaunsinger*

Department of Chemistry and Center for Solid State Science, Arizona State University Tempe, Arizona 85287-1604

> Received July 10, 1992 Revised Manuscript Received March 8, 1993

Intercalation compounds of lamellar transition metal disulfides (TS_2) have been widely used to investigate properties of materials confined to two dimensions.¹⁻³ Solvated-cation intercalation compounds offer an excellent opportunity to study two-dimensional solvation chemistry by probing the relative strengths of their guest-host and guest-guest interactions. The two simplest solvents suitable for study of model solvated compounds are NH₃ and water.

Hydrated metal-TiS₂ intercalates exist in both monolayer and bilayer forms, whereas only monolayer compounds have been observed for NH₃-solvated systems.³⁻⁵ This can be attributed to the greater cation solvation energy of aqueous intercalates. Unfortunately, no complete structural refinements for hydrated intercalates are currently available. However, the structure of $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-}$ has recently been solved by Rietveld refinement of time-of-flight neutron powder diffraction (NPD) data, which provides the first detailed structural evidence from which solvated intercalate guest ND_3 and ND_4^+ nitrogen positions are located at the center of trigonal prismatic guest sites, with both species distributed randomly over these sites. The ND₃ solvent adopts a planar structure, with two deuterium atoms hydrogen bonded to sulfur atoms in adjacent host-layers and the third located on the interlayer midplane. This structure is consistent with previous single-crystal proton NMR data, which indicate the C_3 axis of NH₃ is parallel to the host layers in nominally (NH₃)_{1.0}TaS₂.^{7,8} Also, it has recently been proposed that the guest species associated with these ammonia intercalates may be better described as individual N and H atoms occupying specific crystallographic guest sites, rather than molecular and molecular-ion intercalants.9

guest and guest-host interactions can be assessed.⁶ The

The unique structures and guest-guest and guesthost interactions associated with several ammoniated metal-cation intercalates have been investigated recently.^{5,10} Structural refinement of NPD data for Li⁺_{0.22}(ND₃)_{0.63}TiS₂^{0.22-} supports the presence of lithium- NH_3 complexes, $Li^+(ND_3)_3$.¹⁰ Other ammoniated metalcation ($M^{n+} = Ca^{2+}$, Sr^{2+} , Ba^{2+} , and Yb^{3+}) intercalates of TiS₂ also apparently contain discrete complexes having coordination numbers of 2, 3, or 6, depending on the nature of the metal and its concentration.⁵ Herein, we describe the structural investigation of the sodium NH_3 -TiS₂ intercalation system, which provides the first evidence for compositionally induced molecular reorientation in monolayer intercalation compounds.

Highly stoichiometric $TiS_2(Ti_{1.002}S_2)$ was used as the host material.^{11,12} Both the host and intercalates were prepared, handled and investigated under rigorous inert-

⁽¹⁾ Levy, F., Ed. Intercalated Layered Materials; D. Reidel: Dordrecht: Holland, 1979.

⁽²⁾ Whittingham, M. S., Jacobson, A. J., Eds. Intercalation Chemistry; (3) Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds. Inclusion

Compounds; Academic Press: London, 1984.

 ⁽⁴⁾ Lef, A.; Schöllhorn, R. Inorg. Chem. 1977, 16, 2950.
 (5) Ong, E. O.; McKelvy, M. J.; Dotson, L. A.; Glaunsinger, W. S. Chem. Mater. 1991, 3, 17.

⁽⁶⁾ Young, Jr., V. G.; McKelvy, M. J.; Glaunsinger, W. S.; Von Dreele,
R. B. Solid State Ionics 1988, 26, 47.
(7) Gamble, F. R.; Silbernagel, B. G. J. Chem. Phys. 1975, 63, 2544.
(8) Reikel, C. Prog. Solid State Chem. 1980, 13, 89.
(9) McMillian, P. F.; Cajipe, V.; Molinié, P.; Quinton, M. F.; Gourlaouen, V.; Colombet, P. Chem. Mater. 1991, 3, 796.
(10) Young, Jr., V. G.; McKelvy, M. J.; Glaunsinger, W. S.; Von Dreele,
R. B. Chem. Mater. 1990, 2, 75.

Figure 1. Typical TGA curve for the thermal deintercalation of $Na_{0.26}^{+}(NH_3^{+})_{0.12}(NH_3^{**})_{0.16}TiS_2^{0.25-}$, where NH_3^{+} and NH_3^{**} represent more tightly and more weakly bound NH_3 , respectively. Over 100 TGAs of $Na_{0.26}^{+}(NH_3)_{y'}TiS_2^{0.25-}$, 0.12 < y' < 0.56, consistently yielded the stable intermediate intercalate $Na_{0.26}^{+}(NH_3^{+})_{0.12\pm0.01}TiS_2^{0.25-}$, demonstrating the reproducible nature of the intermediate.

atmosphere conditions.^{11,13} The results herein reflect multiple analyses of 20 individual sample preparations, all of which were reproducible within experimental error. Intercalate stoichiometry was determined using thermogravimetric analysis (TGA), as described previously.^{11,13} Debye-Scherrer X-ray powder diffraction (XPD) data were collected for fully ammoniated and partially and completely NH₃ deintercalated samples contained in sealed 0.3-mm-diameter Pyrex capillaries. Materials containing 0.25 mol of Na^+/mol of TiS_2 were chosen for this investigation to avoid the co-intercalation of NH_4^+ , which occurs for metal-NH₃ intercalates having a charge transfer less than 0.25 mol of $e^{-/mol}$ of TiS_{2} ,¹³ and to maximize the NH_3/Na^+ ratio. The particle size of the resulting intercalates was of the order of tens of microns in diameter.

The fully intercalated material, equilibrated under 500 Torr of NH₃, has a stoichiometry of Na⁺_{0.25}-(NH₃)_{0.75}TiS₂^{0.25-}. Gas evolution during thermal deintercalation, which was complete by 230 °C, occurred in two steps, and all the evolved gas was condensable at -196 °C. Mass spectrometric analysis showed that only NH₃ was liberated during both steps. A typical TGA curve for Na⁺_{0.25}(NH₃)_y/TiS₂^{0.25-} is shown in Figure 1. At ambient temperature, the more weakly held NH₃ (NH₃^w) deintercalates to form Na⁺_{0.25}(NH₃^t)_{0.12±0.01}TiS₂^{0.25-}. NH₃^t represents the remaining, more tightly held NH₃. This species is not removed until the temperature is increased above 90 °C. XPD of the resulting Na⁺_{0.25}TiS₂^{0.25-} is in good agreement with the known 6R, stage-II structure of similar Na⁺_xTiS₂^{x-} intercalates.¹⁴

XPD data for the fully intercalated material can be completely indexed as a 3R-type structure, with reflection intensities comparable to those for ammoniated TiS_2 .¹³ This indicates the stacking of the [S-Ti-S] layers rearranged during intercalation to provide trigonal pris-

Table I. Cell Constants for Selected Intercalation Compounds

compound	a (Å)	c (Å)	OLE (Å)
Na ⁺ 0.25(NH ₃)0.75TiS ₂ ^{0.25-}	3.426(1)	27.14(1)	3.35
Na ^{+0.25} (NH ₃ ^t) _{0.12} TiS ₂ ^{0.25-a}	3.421(5)	38.12(3)	1.32
Na ^{+0.25} TiS ₂ ^{0.25-}	3.417(2)	38.20(5)	1.34
$(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-}$	3.417(1)	26.72(1)	3.21

^a NH₃^t denotes tightly held NH₃.

matic interlayer guest sites, as previously observed for $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-,6}$ The occupied-layer expansion (OLE) of 3.35 Å for the fully intercalated material is comparable to that for $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-,6}$ as shown in Table I. This suggests that NH₃ in Na⁺_{0.25}(NH₃)_{0.75}TiS₂^{0.25-} may have a structure and orientation similar to that observed for $(ND_4^+)_{0.22}(ND_3)_{0.34}$ TiS₂^{0.22-}, where ND₃ is effectively propping open the host layers. The small 0.14 Å difference in OLE between $(ND_4^+)_{0.22}(ND_3)_{0.34}$ TiS₂^{0.22-} is probably due to the additional NH₃ in the van der Waals (vdW) gap of the latter compound.

XPD data for $Na^+_{0.25}(NH_3^t)_{0.12}TiS_2^{0.25-}$ and $Na^+_{0.25}TiS_2^{0.25-}$ are completely indexable as stage-II 6R structures. Their OLE's are experimentally indistinguishable, as shown in Table I, demonstrating that sodium is primarily responsible for host-layer separation. The pronounced drop in OLE from 3.35 Å for $Na^+_{0.25}(NH_3)_{0.75}TiS_2^{0.25-}$ to 1.32 Å for $Na^+_{0.25}(NH_3^t)_{0.12}TiS_2^{0.25-}$ suggests a 90° NH₃ reorientation, with the Na^+ -host layer forces, which are primarily ionic, presumably forcing the compression of the vdW gap.

It is proposed that the following sequence of events provides a reasonable explanation of this unusual behavior. The initial deintercalation process, as illustrated in Figure 2 involves NH₃ propping open the layers, possibly with its pseudo- C_3 axis parallel to the host layers. During the progressive deintercalation of NH₃, the relative importance of Na⁺-host layer attraction increases with decreasing NH₃ content until a threshold concentration is reached. At this concentration, insufficient NH₃ remains to hold the occupied vdW gaps open to 3 Å, and the Na⁺-TiS₂^{0.25-} guest-host attractions initiate the collapse of the OLE to that observed for Na⁺_{0.25}TiS₂^{0.25-}. This can force the remaining NH₃^t to adopt a structure that is planar, or nearly planar, and parallel to the host layers.

The strong similarity between the XPD patterns of $Na^{+}_{0.25}(NH_3^{t})_{0.12}TiS_2^{0.25}$ and $Na^{+}_{0.25}TiS_2^{0.25}$ suggest Na^{+} resides in trigonal-prismatic guest sites for the ammoniate, as previously found for $Na^+_{0.25}TiS_2^{0.25-.14}$ The reoriented NH₃ also probably occupies trigonal-prismatic guest sites, with N at the site center. A probable NH₃ geometry would have the N-H bonds directed at the prism face centers. in which case the bonding would involve sp² hybridization of N. Figure 3 shows this configuration with the hydrogen atoms on the face center sites. The plausibility of such a structure follows from the calculated N-H (0.99 Å), H-S (2.7 Å), and S-N (2.9 Å) distances. The N-H distances are consistent with those found in crystalline NH₃.⁶ The H-S distances are close to those associated with weak D-S hydrogen bonding in $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-.6}$ The S-N distances are somewhat shorter than the vdW S-N distance of 3.2-3.3 Å,¹⁶ which could result from a combination of electrostatic interlayer compressive forces due

⁽¹¹⁾ Bernard, L.; McKelvy, M.; Glaunsinger, W.; Colombet, P. Solid State Ionics 1985, 15, 301.

⁽¹²⁾ McKelvy, M. J.; Glaunsinger, W. S. J. Solid State Chem. 1987, 66, 181.

⁽¹³⁾ McKelvy, M.; Bernard, L.; Glaunsinger, W.; Colombet, P. Solid State Chem. 1986, 65, 79.

⁽¹⁴⁾ Bouwmeester, H.J. M.; Dekker, E. J. P.; Bronsema, K. D.; Haange, R. J.; Wiegers, G. A. Rev. Chim. Miner. 1982, 19, 333.

⁽¹⁵⁾ Daumas, N.; Hérold, A., C.R. Seances Acad. Sci., Ser., C 1969, 268, 373.

Figure 2. Schematic of the deintercalation and reorientation of NH_3 in $Na^+_{0.26}(NH_3)_y TiS_2^{0.25-}$. The upper illustration is for the fully ammoniated sample (y' = 0.75), where planar NH_3 (represented by an ellipse) is assumed to be planar and perpendicular to the host layers by analogy to $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-}$. Upon partial deintercalation to y' = 0.12, the occupied layer expansion decreases from 3.35 to 1.32 Å and NH_3 reorients from its original configuration to a planar, or near planar, geometry essentially parallel to the host layers, as shown in the lower illustration. The evolution of the NH_3 geometry between the initial and final configurations is unresolved. Note: The accompanying restaging $(I \rightarrow II)$ transition need not involve Na^+ transfer to neighboring galleries. Instead, the requisite restaging can be accomplished through the formation of Daumas-Hérold guest islands.¹⁵

to Na⁺ and sp² hybridization of NH₃. Shorter S–N distances are expected for sp² hybridization, since the lone pair in the N $2p_z$ orbital is directed between intraplanar S sites. Moreover, a Slater orbital calculation indicates that 99.7% of the electron density of the N $2p_z$ orbital lies within a 1.2 Å radius, which is 0.35 Å smaller than the vdW radius of N and, hence, can help account for the reduced S–N distance for reoriented NH₃.

Differential scanning calorimetry (DSC) of Na⁺_{0.25}(NH₃)_y/TiS₂^{0.25-} to 300 °C exhibits a single endothermic peak below 90 °C that is associated with NH₃^w deintercalation (10.8 kcal/mol NH₃^w). This enthalpy is essentially the same as that for NH_3 in $(NH_4^+)_{0.22}(NH_3)_{0.23}$ - $TiS_2^{0.22-}$ (10.5 kcal/mol NH₃)¹⁷, which suggests that these species are bound between the layers in a similar fashion. Except for a small baseline irregularity (≈0.1 kcal/mol) the enthalpy associated with NH₃^t deintercalation is not observable within experimental error $(\pm 1 \text{ kcal/mol NH}_3)$. This suggests that NH₃^t can be viewed as being "trapped" after NH₃^w deintercalation. The lack of an observable enthalpy change for NH₃^t deintercalation indicates its exothermic and endothermic components are nearly equal. It also demonstrates that NH3^w substantially lowers the intercalate enthalpy while NH₃^t does not, which suggests that NH_3^t is less effective in stabilizing the intercalate (see Figure 3).

Figure 3. Possible model for NH_3^t in $Na^+_{0.25}(NH_3^t)_{0.12}TiS_2^{0.25-}$. NH_3^t is located in trigonal prismatic guest sites, with the N-H bonds directed at the prism face centers. In this configuration, the N orbitals used for N-H bonding would be sp² hybridized, and the electron lone pair on N would occupy a $2p_z$ orbital. The calculated N-H, H-S, and S-N distances are 0.99, 2.7, and 2.9 Å, respectively. In this model, 74% of the stage II trigonal prismatic guest sites are occupied, with some of the NH₃^t hydrogen positions quite close (2.7 Å) to the Na⁺ positions. This suggests significant Na⁺-H repulsions could be present. This is consistent with the DSC results, which indicate that NH_3^w stabilizes the intercalate by 10.8 kcal/mol NH₃ more than NH₃^t.

The planar structure of ammonia in $(ND_4^+)_{0.22}(ND_3)_{0.34}$ - $TiS_{2^{0.22-6}}$ and $Na^{+}_{0.25}(NH_{3})_{0.12}TiS_{2^{0.25-}}$ underscores the inadequacy of viewing guest species as simply retaining their unintercalated molecular structure. Instead, the intercalated molecule is subjected to substantial guesthost and guest-guest interactions that may result in new structural arrangements. In particular, the above NH₃ guest species may closely resemble the planar transitionstate structure associated with $NH_3(g)$ inversion, which requires 5.9 kcal/mol NH₃ to occur.¹⁸ Such an intercalant structure is feasible, since the distortion energy is only about half of the enthalpy decrease for NH₃ intercalation $(\approx 11 \text{ kcal/mol NH}_3)$.¹⁷ Although the evolution in NH₃ structure from the initial to the final planar configuration is unresolved, it is likely that the transition involves some pyramidal character.

Recent work in our laboratories indicates that NH_3^t is formed during the thermal deintercalation of $Na^+_x(NH_3)_y$ TiS₂^{x-} for 0.15 < x < 0.40. Most importantly, the ratio NH_3^t : Na is 1:2 over this entire composition range. This indicates that during deintercalation more than one NH_3 per two sodiums can adequately oppose the sodiumhost attractions. However, when the ratio reaches 1:2, sodium-host attractions dominate, resulting in partial collapse of the occupied vdW gaps and reorientation of NH_3 .

Other monovalent metal- NH_3 systems intercalated into TiS₂ have also been investigated to determine if NH_3 reorientation is a general phenomenon. However, the only other system to exhibit evidence of NH_3 reorientation during deintercalation is silver- NH_3 . Lithium forms intercalation complexes with NH_3 , but there is no evidence

⁽¹⁶⁾ This distance was determined using 1.71 Å for the S radius and 1.55 Å for the vdW radius of N (Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity; Harper and Row: New York, 1972).

 ⁽¹⁷⁾ McKelvy, M. J.; Glaunsinger, W. S. J. Solid State Chem. 1987,
 67, 142.

⁽¹⁸⁾ Townes, C. H.; Schawlow, A. L. Microwave Spectroscopy; Dover Publications, Inc.: New York, 1975.

for NH₃ reorientation during NH₃ deintercalation. The other alkali-metal intercalates, $M_x^+TiS_2^{x-}$ (M = K, Rb, Cs), have OLEs that are apparently too large to reorient NH₃. The NH₃ reorientation phenomenon is not expected to be limited to the above TiS_2 intercalates. Such behavior may well occur for other solvated-ion intercalates if a suitable balance of guest-guest and guest-host interactions can be achieved.

Finally, we wish to point out that it is also possible to interpret this phenomenon in terms of a change in H atom site preference around distinct N atom sites, where NH_3 is not viewed as a molecular guest, but rather as individual guest N and H atoms.⁹ The applicability of the molecular versus atomic guest models will be the subject of a future publication.