CHEMISTRY OF MATERIA

VOLUME 5, NUMBER 10 OCTOBER 1993

0 **Copyright 1993 by the American Chemical Society**

C'ommunicattons

Unique Ammonia Reorientation in Sodium-Ammonia Intercalation Compounds of Titanium Disulfide

G. L. Burr, M. J. McKelvy, and W. S. Glaunsinger'

Department *of* Chemistry and Center for Solid State Science, Arizona State University Tempe, Arizona *85287-1604*

> Received July *10, 1992* Revised Manuscript Received March *8, 1993*

Intercalation compounds of lamellar transition metal disulfides (TS_2) have been widely used to investigate properties of materials confined to two dimensions. $1-3$ Solvated-cation intercalation compounds offer an excellent opportunity to study two-dimensional solvation chemistry by probing the relative strengths of their guest-host and guest-guest interactions. The two simplest solvents suitable for study of model solvated compounds are NH₃ and water.

Hydrated metal- $TiS₂$ intercalates exist in both monolayer and bilayer forms, whereas only monolayer compounds have been observed for NH_3 -solvated systems.³⁻⁵ This can be attributed to the greater cation solvation energy of aqueous intercalates. Unfortunately, no complete structural refinements for hydrated intercalates are currently available. However, the structure of $(ND_4^+)_{{0.22}}(ND_3)_{{0.34}}TiS_2^{0.22-}$ has recently been solved by Rietveld refinement of time-of-flight neutron powder diffraction (NPD) data, which provides the first detailed structural evidence from which solvated intercalate guestguest and guest-host interactions can be assessed. 6 The ND_3 and ND_4 ⁺ nitrogen positions are located at the center of trigonal prismatic guest sites, with both species distributed randomly over these sites. The ND₃ solvent adopts a planar structure, with two deuterium atoms hydrogen bonded to sulfur atoms in adjacent host-layers and the third located on the interlayer midplane. This structure is consistent with previous single-crystal proton NMR data, which indicate the C_3 axis of NH₃ is parallel to the host layers in nominally $(NH_3)_{1.0}TaS_2^{7,8}$ Also, it has recently been proposed that the guest species associated with these ammonia intercalates may be better described as individual N and H atoms occupying specific crystallographic guest sites, rather than molecular and molecular-ion intercalants.9

The unique structures and guest-guest and guesthost interactions associated with several ammoniated metal-cation intercalates have been investigated recently.^{5,10} Structural refinement of NPD data for Li⁺_{0.22}(ND₃)_{0.63}TiS₂^{0.22-} supports the presence of lithium- $NH₃$ complexes, $Li⁺(ND₃)₃$.¹⁰ Other ammoniated metalcation $(M^{n+} = Ca^{2+}, Sr^{2+}, Ba^{2+}, and Yb^{3+})$ intercalates of TiSz also apparently contain discrete complexes having coordination numbers of **2,3,** or **6,** depending on the nature of the metal and ita concentration.5 Herein, we describe the structural investigation of the sodium NH_3-TiS_2 intercalation system, which provides the first evidence for compositionally induced molecular reorientation in monolayer intercalation compounds.

Highly stoichiometric $\text{TiS}_2(\text{Ti}_{1.002}\text{S}_2)$ was used as the host material. $11,12$ Both the host and intercalates were prepared, handled and investigated under rigorous inert-

⁽¹⁾ Levy, F., Ed. Intercalated Layered Materials; D. Reidel: Dor drecht: Holland, 1979.

⁽²⁾ Whittingham,M. S., Jacobson, A. J.,Eds. IntercalationChemistry; (3) Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds. Inclusion Academic Press: New York, 1982.

Compounds; Academic Press: London, 1984.

⁽⁴⁾ Lerf, A.; Sch6llhorn, R. Inorg. *Chem.* **1977,** *16,* **2950. (5) One, E.** *0.;* **McKelvy, M. J.; Dotaon, L. A,; Glaunsinger, W. S.** *Chem.* **Miter. 1991, 3, 17.**

⁽⁶⁾ Young, Jr., V. G.; McKelvy, M. J.; Glaunsinger, W. S.; Von Dreele, R. B. Solid State Ionics 1988,26, 47.

⁽⁷⁾ Gamble, F. R.; Silbernagel, B. G. J. Chem. Phys. 1975, 63, 2544.
(8) Reikel, C. Prog. Solid State Chem. 1980, 13, 89.
(9) McMillian, P. F.; Cajipe, V.; Molinié, P.; Quinton, M. F.; Gour-

laouen, V.; Colombet, P. *Chem.* **Mater. 1991,3,796.**

⁽¹⁰⁾ Young, Jr.,V.G.;McKelvy,M. J.;Glaunsinger,W.S.;VonDreele, R. B. *Chem.* **Mater. 1990,2,75.**

Figure **1.** Typical TGA curve for the thermal deintercalation of $Na^{+}0.25(S/H_{3}^{+})0.12(S/H_{3}^{*})0.16TiS_{2}^{0.25}$, where NH_{3}^{+} and NH_{3}^{+} represent more tightly and more weakly bound NH₃, respectively. Over 100 TGAs of $\text{Na}^+_{0.25}(\text{NH}_3)_y \text{TiS}_2^{0.25}$, 0.12 $\lt y' \lt 0.56$, consistently yielded the stable intermediate intercalate $Na+_{0.25}(NH_3^4)_{0.12\pm0.01}TiS_2^{0.25}$, demonstrating the reproducible nature of the intermediate.

atmosphere conditions.^{11,13} The results herein reflect multiple analyses of 20 individual sample preparations, all of which were reproducible within experimental error. Intercalate stoichiometry was determined using thermogravimetric analysis (TGA), as described previously. 11,13 Debye-Scherrer X-ray powder diffraction (XPD) data were collected for fully ammoniated and partially and completely NH3 deintercalated samples contained in sealed 0.3-mm-diameter Pyrex capillaries. Materials containing 0.25 mol of $\text{Na}^+\text{/mol}$ of TiS_2 were chosen for this investigation to avoid the co-intercalation of $NH₄$ ⁺, which occurs for metal- $NH₃$ intercalates having a charge transfer less than 0.25 mol of $e^{-}/$ mol of T_iS_2 ,¹³ and to maximize the $NH₃/Na⁺$ ratio. The particle size of the resulting intercalates was of the order of tens of microns in diameter.

The fully intercalated material, equilibrated under 500 Torr of NH_3 , has a stoichiometry of $Na⁺_{0.25}$ - $(NH_3)_{0.75}TiS_2^{0.25}$. Gas evolution during thermal deintercalation, which was complete by 230 °C, occurred in two steps, and all the evolved gas was condensable at -196 **"C.** Mass spectrometric analysis showed that only $NH₃$ was liberated during both steps. A typical TGA curve for $Na_{0.25}(NH_3)_{\rm v}\rm TiS_2$ ^{0.25-} is shown in Figure 1. At ambient temperature, the more weakly held $NH₃ (NH₃^w)$ deintercalates to form $Na_{0.25}(NH_3t)_{0.12\pm0.01}TiS_2^{0.25}$. NH_3t represents the remaining, more tightly held NH₃. This species is not removed until the temperature is increased above 90 °C. XPD of the resulting $\text{Na}^+{}_{0.25}\text{TiS}_2{}^{0.25-}$ is in good agreement with the known 6R, stage-I1 structure of similar Na^{+} _xTiS₂^{x-} intercalates.¹⁴

XPD data for the fully intercalated material can be completely indexed as a 3R-type structure, with reflection intensities comparable to those for ammoniated T_iS_2 .¹³ This indicates the stacking of the [S-Ti-SI layers rearranged during intercalation to provide trigonal pris-

Table I. Cell Constants for Selected Intercalation Compounds

compound	a(A)	$c(\lambda)$	OLE(A)
$Na+0.25(NH3)0.75$ TiS ₂ ^{0.25–}	3.426(1)	27.14(1)	3.35
$Na+0.25(NH3t)0.12TiS20.25- a$	3.421(5)	38.12(3)	1.32
$Na+0.25TiS20.25$	3.417(2)	38,20(5)	1.34
$(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22-}$	3.417(1)	26.72(1)	3.21

 α NH₃^t denotes tightly held NH₃.

matic interlayer guest sites, **as** previously observed for $(ND_4^+)_0.22(ND_3)_0.34$ TiS₂^{0.22-6} The occupied-layer expansion (OLE) of 3.35 **A** for the fully intercalated material is comparable to that for $(ND_4^+)_{{0.22}}(ND_3)_{{0.34}}TiS_2^{0.22-},6$ as shown in Table I. This suggests that $NH₃$ in $\text{Na}^+_{0.25}(\text{NH}_3)_{0.75}\text{TiS}_2{}^{0.25-}$ may have a structure and orientation similar to that observed for $(ND₄⁺)_{0.22}(ND₃)_{0.34}$ $TiS₂^{0.22}$, where $ND₃$ is effectively propping open the host layers. The small 0.14 **A** difference in OLE between $(ND_4^+)_{{0.22}}(ND_3)_{{0.34}}TiS_2^{0.22}$ and $Na^+{}_{0.25}(NH_3)_{{0.75}}$ $TiS₂^{0.25}$ is probably due to the additional NH₃ in the van der Waals (vdW) gap of the latter compound.

 XPD data for $Na^{+}_{0.25}(NH_3^t)_{0.12}TiS_2^{0.25-}$ and $Na^{+}_{0.25-}$ TiS₂0.25- are completely indexable as stage-II 6R structures. Their OLE'S are experimentally indistinguishable, **as** shown in Table I, demonstrating that sodium is primarily responsible for host-layer separation. The pronounced drop in OLE from 3.35 Å for $\text{Na}^+_{0.25}(\text{NH}_3)_{0.75}\text{TiS}_2^{0.25-}$ to 1.32 Å for $\text{Na}^+_{0.25}(\text{NH}_3^*)_{0.12}\text{TiS}_2{}^{0.25-}$ suggests a 90° NH_3 reorientation, with the Na+-host layer forces, which are primarily ionic, presumably forcing the compression of the vdW gap.

It is proposed that the following sequence of events provides a reasonable explanation of this unusual behavior. The initial deintercalation process, as illustrated in Figure 2 involves $NH₃$ propping open the layers, possibly with its pseudo- C_3 axis parallel to the host layers. During the progressive deintercalation of NH3, the relative importance of Na⁺-host layer attraction increases with decreasing $NH₃$ content until a threshold concentration is reached. At this concentration, insufficient NH₃ remains to hold the occupied vdW gaps open to 3 Å, and the Na⁺-TiS₂0.25guest-host attractions initiate the collapse of the OLE to that observed for $Na^{+}0.25TiS_2^{0.25}$. This can force the remaining $NH₃^t$ to adopt a structure that is planar, or nearly planar, and parallel to the host layers.

The strong similarity between the XPD patterns of $Na+_{0.25}(NH_3\bar{t})_{0.12}TiS_2^{0.2\bar{b}-}$ and $Na+_{0.25}TiS_2^{0.2\bar{b}-}$ suggest Na⁺ resides in trigonal-prismatic guest sites for the ammoniate, as previously found for Na^+ _{0.25}TiS₂0.25-14 The reoriented NH3 also probably occupies trigonal-prismatic guest sites, with N at the site center. A probable $NH₃$ geometry would have the N-H bonds directed at the prism face centers, in which case the bonding would involve sp2 hybridization of N. Figure 3 shows this configuration with the hydrogen atoms on the face center sites. The plausibility of such a structure follows from the calculated N-H (0.99 **A),** H-S (2.7 **A),** and S-N (2.9 **A)** distances. The N-H distances are consistent with those found in crystalline $NH₃$.⁶ The H-S distances are close to those associated with weak D.45 hydrogen bonding in $(ND_4^+)_{0.22}(ND_3)_{0.34}TiS_2^{0.22}-.6$ The S-N distances are somewhat shorter than the vdW S-N distance of 3.2-3.3 \AA ¹⁶ which could result from a combination of electrostatic interlayer compressive forces due

⁽¹¹⁾ Bernard, **L.;** McKelvy, M.; Glaunsinger, W.; Colombet, P. *Solid State Zonice* **1985,15,301.**

⁽¹²⁾ McKelw, M. **J.:** Glaunsinaer, W. S. *J. Solid State Chem.* **1987,** *66,* **181.**

State Chem. **1986, 65,79. (13)** McKelvy, **M.;** Bernard, L.; Glaunsinger, W.; Colombet, P. *Solid*

R. J.; Wiegers, G. A. *Rev. Chim. Miner.* **1982,19, 333. (14)** Bouwmeester, H. J. M.;Dekker,E. J. P.;Broneema,K. D.; Haange,

⁽¹⁵⁾ Daumas, N.; Hérold, A., C.R. Seances Acad. Sci., Ser., C 1969, **268, 373.**

Figure 2. Schematic of **the** deintercalation and reorientation of NH_3 in Na⁺_{0.25}(NH₃)_yTiS₂^{0.25}. The upper illustration is for the fully ammoniated sample (y' = 0.75), where planar NH₃ (represented by an ellipse) is assumed to be planar and perpendicular to the host layers by analogy to $(ND_4^+)_{0.22}(ND_3)_{0.34}T_1S_2^{0.22}$. Upon partial deintercalation to $y' = 0.12$, the occupied layer expansion decreases from 3.35 to 1.32 Å and NH₃ reorients from its original configuration to a planar, or near planar, geometry essentially parallel to the host layers, **as** shown in the lower illustration. The evolution of the NH₃ geometry between the initial and final configurations is unresolved. Note: The accompanying restaging $(I \rightarrow II)$ transition need not involve Na⁺ transfer to neighboring galleries. Instead, the requisite restaging can be accomplished through the formation of Daumas-Hérold guest islands.¹⁶

to Na+ and sp2 hybridization of NH3. Shorter S-N distances are expected for sp2 hybridization, since the lone pair in the $N 2p_z$ orbital is directed between intraplanar S sites. Moreover, a Slater orbital calculation indicates that 99.7% of the electron density of the N $2p_z$ orbital lies within a 1.2 **A** radius, which is **0.35 A** smaller than the vdW radius of N and, hence, can help account for the reduced S-N distance for reoriented NH3.

Differential scanning calorimetry (DSC) of $Na+_{0.25}(NH_3)_{y}TiS_2^{0.25}$ to 300 °C exhibits a single endothermic peak below 90 $^{\circ}$ C that is associated with NH₃^w deintercalation (10.8 kcal/mol $NH₃^w$). This enthalpy is essentially the same as that for NH_3 in $(NH_4^+)_{0.22} (NH_3)_{0.23}$ - $TiS₂^{0.22–} (10.5 kcal/mol NH₃)¹⁷, which suggests that these$ species are bound between the layers in a similar fashion. Except for a small baseline irregularity $(\approx 0.1 \text{ kcal/mol})$ the enthalpy associated with $NH₃$ ^t deintercalation is not observable within experimental error $(\pm 1 \text{ kcal/mol NH}_3)$. This suggests that NH₃^t can be viewed as being "trapped" after NH_3 ^w deintercalation. The lack of an observable enthalpy change for $NH₃^t$ deintercalation indicates its exothermic and endothermic components are nearly equal. It also demonstrates that NH_3 ^w substantially lowers the intercalate enthalpy while $NH₃^t$ does not, which suggests that $NH₃^t$ is less effective in stabilizing the intercalate (see Figure 3).

Figure 3. Possible model for NH_3^t in $Na^+_{0.25}(NH_3^t)_{0.12}TiS_2^{0.25}$. $NH₃^t$ is located in trigonal prismatic guest sites, with the N-H bonds directed at the prism face centers. In this configuration, the N orbitals used for N-H bonding would be sp² hybridized, and the electron lone pair on N would occupy a 2p_z orbital. The calculated N-H, H-S, and S-N distances are **0.99,2.7,** and *2.9* **A,** respectively. In this model, **14%** of the stage I1 trigonal prismatic guest sites are occupied, with some of the NH₃^t hydrogen positions quite close (2.7 Å) to the Na⁺ positions. This suggests significant Na+-H repulsions could he present. This is consistent with the DSC results, which indicate that NH_3 ^w stabilizes the intercalate by 10.8 kcal/mol NH₃ more than NH₃^t.

The planar structure of ammonia in $(ND_4^+)_{0.22}(ND_3)_{0.34}$ - $TiS_2^{0.22-6}$ and $Na_{0.25}(NH_3)_{0.12}TiS_2^{0.25-}$ underscores the inadequacy of viewing guest species **as** simply retaining their unintercalated molecular structure. Instead, the intercalated molecule is subjected to substantial guesthost and guest-guest interactions that may result in new structural arrangements. In particular, the above NH₃ guest species may closely resemble the planar transitionstate structure associated with $NH₃(g)$ inversion, which requires **5.9** kcal/mol NH3 to occur.18 Such an intercalant structure is feasible, since the distortion energy is only about half of the enthalpy decrease for NH₃ intercalation \approx 11 kcal/mol NH₃).¹⁷ Although the evolution in NH₃ structure from the initial to the final planar configuration is unresolved, it is likely that the transition involves some pyramidal character.

Recent work in our laboratories indicates that $NH₃$ ^t is formed during the thermal deintercalation of $\text{Na}^+\text{K}(\text{NH}_3)_{\text{V}}\text{TiS}_2^{\text{X-}}\text{ for }0.15 \leq x \leq 0.40$. Most importantly, the ratio NH_3 : Na is 1:2 over this entire composition range. This indicates that during deintercalation more than one $NH₃$ per two sodiums can adequately oppose the sodiumhost attractions. However, when the ratio reaches 1:2, sodium-host attractions dominate, resulting in partial collapse of the occupied vdW gaps and reorientation of $NH₃$.

Other monovalent metal-NH₃ systems intercalated into $TiS₂$ have also been investigated to determine if $NH₃$ reorientation is a general phenomenon. However, the only other system to exhibit evidence of NH3 reorientation during deintercalation is silver-NH₃. Lithium forms intercalation complexeswith NH3, but there is no evidence

⁽¹⁶⁾ Thia **distance** *(988* **determined using** *1.11 h* **for the S radius and 1.55 A for the vdW radius of N (Huheey, J. E.** *Inorganic Chemistry: Principles of Slrucluro and Reortiuit,;* **Harper and Row New York. 19721.**

⁽¹⁷⁾ McKelvy, M. J.; Ghunsinger, **W. S.** J. *Solid State Chm.* **1987, 67, 142.**

⁽¹⁸⁾ Towns% C. H.; Sehawlow, A. L. *Microwme* Spectroscopy; **Dovsr** Publications, **Inc.: New York, 1915.**

other alkali-metal intercalates, $M^+{}_xTiS_2^{x-}$ ($M = K$, Rb, interpret this phenomenon in terms of a change in H atom
Cs), have OLEs that are apparently too large to reorient site preference around distinct N atom sites, Cs), have OLEs that are apparently too large to reorient site preference around distinct N atom sites, where NH₃
NH₃. The NH₃ reorientation phenomenon is not expected is not viewed as a molecular guest, but rather as NH_3 . The NH₃ reorientation phenomenon is not expected is not viewed as a molecular guest, but rather as individual to be limited to the above TiS₂ intercalates. Such behavior guest N and H stoms ⁹. The applicabili may well occur for other solvated-ion intercalates if a may well occur for other solvated-ion intercalates if a suitable balance of guest-guest and guest-host interactions publication.
can be achieved.

for NH₃ reorientation during NH₃ deintercalation. The Finally, we wish to point out that it is also possible to other alkali-metal intercalates, M^+ _xTiS₂^{x-} (M = K, Rb, interpret this phenomenon in terms of a c guest N and H atoms.⁹ The applicability of the molecular